Projekte

Current projects

High-Performance FeAlCuNiTi-Based Metal Matrix Composites for High-Temperature Applications
Duration: 01.07.2024 bis 30.06.2026

Im Rahmen der wissenschaftlich-technischen Zusammenarbeit wird die Herstellung von Hochleistungs-Metall-Matrix-Verbundwerkstoffen auf Basis von Multikomponenten-Werkstoffen für Hochtemperaturanwendungen angestrebt. Speziell wird die Herstellung von Multikomponenten-Werkstoffen durch eine Kombination von Verfahren der klassischen Pulvermetallurgie und des Funkenplasmasinterns vereinfacht und soll deutlich verbesserte (mechanische) Eigenschaften gewährleisten. Diese Methode ermöglicht es, ein auf Anwendungsfälle zugeschnittenes Werkstoffdesign umzusetzen und stellt gleichzeitig eine wissenschaftlich-technologische Herausforderung dar. Zudem ermöglicht die Zugabe von keramischen Partikeln eine Steigerung der Festigkeit der Legierungen. Die zu erprobende Technologie ließe sich perspektivisch im industriellen Maßstab anwenden.

View project in the research portal

Alloy design for improved materials properties
Duration: 01.07.2023 bis 30.06.2026

Metallische Werkstoffe für Anwendungen als Strukturwerkstoffe, u.a. in korrosiver Umgebung bei unterschiedlichen Temperaturen, müssen ein breites Eigenschaftsspektrum aufweisen. Durch die Zugabe von Legierungselementen können die Eigenschaften in einem breiten Bereich beeinflusst werden. So kann z.B. die Festigkeit von Molybdänwerkstoffen selbst durch geringfügige Mengen an Silizium deutlich gesteigert werden. Auch weitere Eigenschaften, wie der tribologische Abrieb, die Oxidations- bzw. Korrosionsrate und die zyklische Festigkeit, sind stark von der Auswahl, der Konzentration und der Kombination von Legierungselementen abhängig. Zusätzlich spielt der Wärmebehandlungszustand der Legierungen für die anwendungsgerechte Einstellung des Eigenschaftsspektrums eine große Rolle. Für Werkstoffe im Medizinbereich, bspw. Implantatwerkstoffe, spielen außerdem Eigenschaften unter variierenden Beanspruchungsbedingungen (zyklische Belastung) eine entscheidende Rolle. Im Rahmen dieses Projektes sollen Werkstoffe so modifiziert werden, dass Härte und Verschleißbeständigkeit erhöht und die statische bzw. zyklische Beanspruchbarkeit verbessert wird, ohne die Oxidations- und Korrosionsbeständigkeit zu vermindern. Dabei werden die Mikrostruktur-Eigenschaftsbeziehungen gezielt beeinflusst, um optimale Voraussetzungen für die spätere Anwendung zu schaffen.

View project in the research portal

ME-MAT: Herstellungsbedingte Optimierung metallischer Hochtemperaturwerkstoffe
Duration: 01.01.2024 bis 31.12.2025

Das übergeordnete Ziel des Vorhabens ME-MAT liegt im Netzwerkaufbau zwischen Kooperationspartnern aus Deutschland, Polen, Bulgarien und Ungarn.
Der wissenschaftliche Fokus liegt auf der Anpassung der Pulverfertigung für additive Herstellungsverfahren. Da der avisierte mehrphasige Werkstoff aus der Gruppe der Refraktärmetalle eine extrem hohe Schmelztemperatur besitzt und gleichzeitig unter Umgebungsbedingungen sehr reaktiv ist, ergeben sich herausfordernde Forschungsfragestellungen.

View project in the research portal

Completed projects

New alloying strategies for Mo-based high temperature materials
Duration: 01.10.2019 bis 30.06.2023

The demand for new high temperature alloys increases due to economic reasons and stricter climate protection and resource conservation requirements. For applications in the field of energy conversion, new Mo-Si-B materials are in the focus of current research. There is a specific interest in alloys with a continuous Mo matrix phase and silicide particles, which provide an acceptable fracture toughness and high creep resistance at the same time.
A drawback of potential applications of Mo-Si-B alloys, e.g. as rotating turbine blades, is the density of > 9 g/cm³. Therefore, this project aims into a density reduction of this alloy type, meeting values of < 8 g/cm³. This is challenging because significant losses in the fracture toughness and the creep resistance should be avoided.

View project in the research portal

Mikro-Makro-Wechselwirkungen in strukturierten Medien und Partikelsystemen GRK 1554
Duration: 01.10.2014 bis 31.03.2019

Teilprojekt:  Mikrostrukturelle Schädigung von beschichteten AlSi-Werkstoffen unter mechanischer und thermischer Belastung

Bearbeitung: Dipl.-Ing. Philipp G. Thiem     
  
Neue intermetallische Schichtsysteme auf AlSi-Substraten werden untersucht.  Die beschichteten Werkstoffe werden dabei  sowohl statischen als auch zyklischen Belastungen unterworfen, um die Auswirkungen der Legierungszusammensetzung, der Mikrostruktur und der Schichtdicke auf die Rissentstehung  und die Rissausbreitung im anwendungsrelevanten Temperaturbereich zu untersuchen. Werkstoffkennwerte, z.B. der Elastizitätsmodul, und weitere Parameter wie die Haftfestigkeit der Schicht sollen dabei in die Modellierung der Schädigungsmechanismen in diesem Werkstoffverbund einbezogen werden.  

Teilprojekt:  Rissinitiierung und Rissausbreitung in mehrphasigen Hochtemperaturwerkstoffen

Bearbeitung: M.Sc. Julia Becker    

Mehrphasige Hochtemperaturwerkstoffe werden in Bezug auf die Rissinitiierung in den einzelnen Phasen, den Rissfortschritt und ihre Bruchzähigkeit untersucht. Erste Experimente zur Risseinleitung und Rissausbreitung wurden an pulvermetallurgisch hergestellten Mo-Si-B-Legierungen mit Hilfe der Eindruck-Bruchmechanik-Methode durchgeführt. Die Erkenntnisse daraus sollen auf gerichtet erstarrte mehrphasige Molybdänwerkstoffe übertragen werden.

Mitarbeit in weiteren Teilprojekten:
* Experimental Investigations and Numerical Simulations of Lamellar Cu-Ag Composites

Bearbeitung: M. Sc. Srihari Dodla
Betreuung: Prof. A. Bertram, Prof. M. Krüger

* Crystal Viscoplasticity Based Simulation of Ti-Al Alloy under High-Temperature Conditions

Bearbeitung: M. Sc. Helal Chowdhury
Betreuung: Prof. K. Naumenko, Prof. H. Altenbach, Prof. M. Krüger

View project in the research portal

Last Modification: 03.04.2023 - Contact Person: Julia Becker