Projekte
Aktuelle Projekte
MAT-COM: Hochleistungs-Metall-Matrix-Verbundwerkstoffe auf FeAlCuNiTi-Basis für Hochtemperaturanwendungen
Laufzeit: 01.07.2024 bis 30.06.2026
Im Rahmen der wissenschaftlich-technischen Zusammenarbeit wird die Herstellung von Hochleistungs-Metall-Matrix-Verbundwerkstoffen auf Basis von Multikomponenten-Werkstoffen für Hochtemperaturanwendungen angestrebt. Speziell wird die Herstellung von Multikomponenten-Werkstoffen durch eine Kombination von Verfahren der klassischen Pulvermetallurgie und des Funkenplasmasinterns vereinfacht und soll deutlich verbesserte (mechanische) Eigenschaften gewährleisten. Diese Methode ermöglicht es, ein auf Anwendungsfälle zugeschnittenes Werkstoffdesign umzusetzen und stellt gleichzeitig eine wissenschaftlich-technologische Herausforderung dar. Zudem ermöglicht die Zugabe von keramischen Partikeln eine Steigerung der Festigkeit der Legierungen. Die zu erprobende Technologie ließe sich perspektivisch im industriellen Maßstab anwenden.
Werkstoffdesign mittels Legieren und Wärmebehandlung
Laufzeit: 01.07.2023 bis 30.06.2026
Metallische Werkstoffe für Anwendungen als Strukturwerkstoffe, u.a. in korrosiver Umgebung bei unterschiedlichen Temperaturen, müssen ein breites Eigenschaftsspektrum aufweisen. Durch die Zugabe von Legierungselementen können die Eigenschaften in einem breiten Bereich beeinflusst werden. So kann z.B. die Festigkeit von Molybdänwerkstoffen selbst durch geringfügige Mengen an Silizium deutlich gesteigert werden. Auch weitere Eigenschaften, wie der tribologische Abrieb, die Oxidations- bzw. Korrosionsrate und die zyklische Festigkeit, sind stark von der Auswahl, der Konzentration und der Kombination von Legierungselementen abhängig. Zusätzlich spielt der Wärmebehandlungszustand der Legierungen für die anwendungsgerechte Einstellung des Eigenschaftsspektrums eine große Rolle. Für Werkstoffe im Medizinbereich, bspw. Implantatwerkstoffe, spielen außerdem Eigenschaften unter variierenden Beanspruchungsbedingungen (zyklische Belastung) eine entscheidende Rolle. Im Rahmen dieses Projektes sollen Werkstoffe so modifiziert werden, dass Härte und Verschleißbeständigkeit erhöht und die statische bzw. zyklische Beanspruchbarkeit verbessert wird, ohne die Oxidations- und Korrosionsbeständigkeit zu vermindern. Dabei werden die Mikrostruktur-Eigenschaftsbeziehungen gezielt beeinflusst, um optimale Voraussetzungen für die spätere Anwendung zu schaffen.
ME-MAT: Herstellungsbedingte Optimierung metallischer Hochtemperaturwerkstoffe
Laufzeit: 01.01.2024 bis 31.12.2025
Das übergeordnete Ziel des Vorhabens ME-MAT liegt im Netzwerkaufbau zwischen Kooperationspartnern aus Deutschland, Polen, Bulgarien und Ungarn.
Der wissenschaftliche Fokus liegt auf der Anpassung der Pulverfertigung für additive Herstellungsverfahren. Da der avisierte mehrphasige Werkstoff aus der Gruppe der Refraktärmetalle eine extrem hohe Schmelztemperatur besitzt und gleichzeitig unter Umgebungsbedingungen sehr reaktiv ist, ergeben sich herausfordernde Forschungsfragestellungen.
Abgeschlossene Projekte
Neue Legierungsstrategien für Mo-basierte Hochtemperaturwerkstoffe
Laufzeit: 01.10.2019 bis 30.06.2023
Hinsichtlich der Schonung von Ressourcen und der Verringerung von Umweltbelastungen ist die Steigerung des Wirkungsgrades von Turbinen im Kraftwerks- und Triebwerksbereich ein an Bedeutung zunehmender Forschungsschwerpunkt. Insbesondere ternäre Mo-Si-B Legierungen, deren Gefüge möglichst aus einer kontinuierlichen Mo-Mischkristallmatrix mit homogen verteilten intermetallischen Phasen bestehen, bieten eine ausgewogene Kombination der Hoch- und Raumtemperatureigenschaften. Da die mechanischen Eigenschaften der Mo-basierten Legierungen signifikant durch das Herstellungsverfahren beeinflusst werden, wird an pulvermetallurgischen, schmelzmetallurgischen und additiven Fertigungsverfahren geforscht.
Die verhältnismäßig hohe Dichte (> 9 g/cm³) dieser Legierungsklasse stellt allerdings einen entscheidenden Nachteil bei der potentiellen Anwendung als Turbinenschaufel dar. Ziel soll es sein, die Dichte dieser ternären Legierungen mit Hilfe von geeigneten Legierungsstrategien auf Werte unter 8 g/cm³ zu reduzieren, um die Konkurrenzfähigkeit dieser Werkstoffe zu erhöhen. Die Herausforderung besteht insbesondere darin, dass die wichtigen mechanischen Eigenschaften, wie die Risszähigkeit bei vergleichsweise tiefen Temperaturen und die Kriechbeständigkeit bei Temperaturen oberhalb von 1000°C nicht wesentlich beeinträchtigt werden.
Mikro-Makro-Wechselwirkungen in strukturierten Medien und Partikelsystemen GRK 1554
Laufzeit: 01.10.2014 bis 31.03.2019
Teilprojekt: Mikrostrukturelle Schädigung von beschichteten AlSi-Werkstoffen unter mechanischer und thermischer Belastung
Bearbeitung: Dipl.-Ing. Philipp G. Thiem
Neue intermetallische Schichtsysteme auf AlSi-Substraten werden untersucht. Die beschichteten Werkstoffe werden dabei sowohl statischen als auch zyklischen Belastungen unterworfen, um die Auswirkungen der Legierungszusammensetzung, der Mikrostruktur und der Schichtdicke auf die Rissentstehung und die Rissausbreitung im anwendungsrelevanten Temperaturbereich zu untersuchen. Werkstoffkennwerte, z.B. der Elastizitätsmodul, und weitere Parameter wie die Haftfestigkeit der Schicht sollen dabei in die Modellierung der Schädigungsmechanismen in diesem Werkstoffverbund einbezogen werden.
Teilprojekt: Rissinitiierung und Rissausbreitung in mehrphasigen Hochtemperaturwerkstoffen
Bearbeitung: M.Sc. Julia Becker
Mehrphasige Hochtemperaturwerkstoffe werden in Bezug auf die Rissinitiierung in den einzelnen Phasen, den Rissfortschritt und ihre Bruchzähigkeit untersucht. Erste Experimente zur Risseinleitung und Rissausbreitung wurden an pulvermetallurgisch hergestellten Mo-Si-B-Legierungen mit Hilfe der Eindruck-Bruchmechanik-Methode durchgeführt. Die Erkenntnisse daraus sollen auf gerichtet erstarrte mehrphasige Molybdänwerkstoffe übertragen werden.
Mitarbeit in weiteren Teilprojekten:
* Experimental Investigations and Numerical Simulations of Lamellar Cu-Ag Composites
Bearbeitung: M. Sc. Srihari Dodla
Betreuung: Prof. A. Bertram, Prof. M. Krüger
* Crystal Viscoplasticity Based Simulation of Ti-Al Alloy under High-Temperature Conditions
Bearbeitung: M. Sc. Helal Chowdhury
Betreuung: Prof. K. Naumenko, Prof. H. Altenbach, Prof. M. Krüger