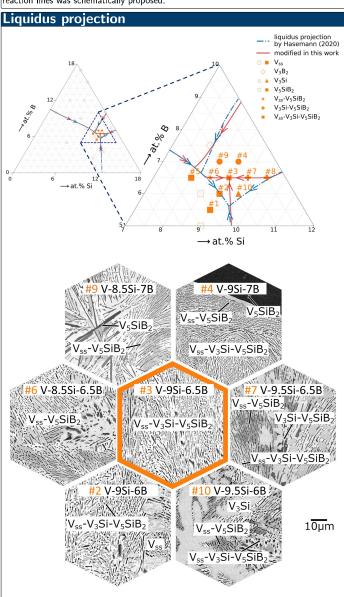
## Ternary V<sub>ss</sub>-V<sub>3</sub>Si-V<sub>5</sub>SiB<sub>2</sub> eutectic formation in the V-Si-B system

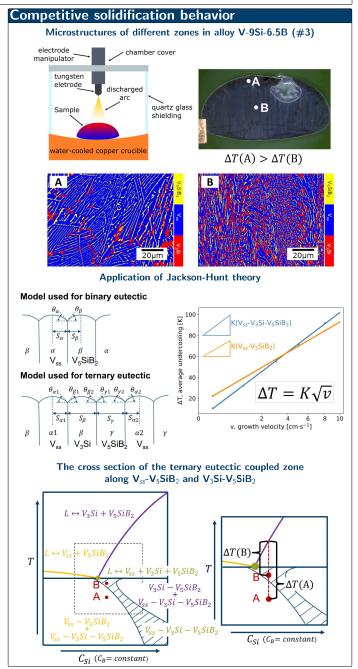
Weiguang Yang<sup>1</sup>, Georg Hasemann<sup>2</sup>, Mustafa Yazlak<sup>3</sup>, Bronislava Gorr<sup>4</sup>, Ruth Schwaiger<sup>1,5</sup> and Manja Krüger<sup>2</sup>

<sup>1</sup>Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Microstructure and Properties of Materials (IEK-2), Leo-Brand-Str. 1, 52425, Jülich, Germany 
<sup>2</sup>Otto-von-Guericke University Magdeburg, Institute of Materials and Joining Technology, Universitätsplatz 2, 39106, Magdeburg, Germany 
<sup>3</sup>Otto-von-Guericke University Magdeburg, Institute of Materials and Joining Technology, Universitätsplatz 2, 39106, Magdeburg, Germany 
<sup>3</sup>Otto-von-Guericke University Magdeburg, Institute of Materials and Joining Technology, Universitätsplatz 2, 39106, Magdeburg, Germany


<sup>3</sup>University Siegen, Institute of Materials Technology, Paul-Bonatz-Str. 9-11, 57076, Siegen, Germany

<sup>4</sup>Karlsruhe Institute of Technology, Institute for Applied Materials - Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany

<sup>5</sup>Chair of Energy Engineering Materials, Faculty 5, RWTH Aachen University, Templergraben 55, 52056, Aachen, Germany


## **Abstract**

The solidification behavior close to the ternary  $V_{ss}$ - $V_3$ Si- $V_5$ SiB<sub>2</sub> eutectic reaction in the V-Si-B system has been experimentally investigated via arc-melting. According to the microstructure investigation, which is performed by scanning electron microscope (SEM) observations, energy-dispersive X-ray (EDS) and electron backscatter diffraction (EBSD) measurements and X-ray diffraction (XRD) analysis, the composition of the ternary eutectic reaction has been determined at V-9Si-6.5B (at.%). Its microstructures in two different sample sections with different cooling rates were further investigated and compared with the calculated result of the developed eutectic growth theory based on the Jackson-Hunt model [1] to reveal the competitive solidification behavior between the two-phase  $V_{ss}$ - $V_5$ SiB<sub>2</sub> and three-phase  $V_{ss}$ - $V_3$ Si- $V_5$ SiB<sub>2</sub> eutectic growth. As a result, the liquidus projection around the ternary eutectic reaction was modified and the cross section of the ternary  $V_{ss}$ - $V_3$ Si- $V_5$ SiB<sub>2</sub> eutectic coupled zone along the monovariant  $V_{ss}$ - $V_5$ SiB<sub>2</sub> and  $V_3$ Si- $V_5$ SiB<sub>2</sub> reaction lines was schematically proposed.



## Summary

- V-9Si-6.5B can be determined as the composition of the ternary  $V_{ss}$ - $V_3Si-V_5SiB_2$  eutectic reaction and the liquidus projection around the ternary eutectic reaction was modified, which can be used to design V-Si-B alloys close to the ternary eutectic reaction
- The three-phase V<sub>ss</sub>-V<sub>3</sub>Si-V<sub>5</sub>SiB<sub>2</sub> eutectic formation in alloy V-9Si-6.5B (#3) can be
  preferable at low undercoolings as compared to the two-phase V<sub>ss</sub>-V<sub>5</sub>SiB<sub>2</sub> eutectic
  formation, while the two-phase V<sub>ss</sub>-V<sub>5</sub>SiB<sub>2</sub> eutectic formation becomes the preference
  at high undercoolings.
- The three-phase  $V_{ss}$ - $V_{3}Si$ - $V_{5}SiB_{2}$  eutectic coupled zone can be skewed towards the two-phase  $V_{3}Si$ - $V_{5}SiB_{2}$  reaction line and is therefore, another strong argument for the microstructure observation involving undercooling effects via arc-melting.



## **Acknowledgement**

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), project number 410338871. The authors would like to thank C. Thomas (PGI-5, FZ Jülich) for providing access to the arc-melter, Dr. E. Wessel (IEK-2, FZ Jülich) and Dr. D. Grüner (IEK-2, FZ Jülich) for their assistance in SEM investigation as well as EBSD and EDS measurements, M. Ziegner (IEK-2, FZ-Jülich) for supporting the XRD analysis and K. Wang (IEK-2, FZ-Jülich) for helpful discussion about the eutectic growth theory.

Reference: [1] K.A. Jackson, J.D. Hunt, Transcations of the Metallurgical Society of Aime. 1988, 236, 363–376.